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S1 Overview of works on twisted waveguides

Different types of on- and off-axis twisted waveguides are reported in the literature. Tab. S1, shown

on the next two pages, presents a broad selection of works in order of achieved (or theoretically

analyzed) twist rate. Cross sections of these waveguide geometries are depicted in Fig. S1. A

graphical overview of this table is available in Fig. 6.
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Fig S1 Different on- and off-axis twisted waveguide geometries. The waveguides are twisted along the axial direction
(into the plane of the paper) with the location of the twist axis shown in yellow. Twisted waveguides are typically real-
ized from fibers (a-e), while this work investigates 3D-nanoprinted twisted waveguides, allowing on-chip integration
(f). Note that chiral fiber gratings either feature an elliptical core or a slightly eccentric circular core (b). Spun optical
fibers are often realized from bow-tie fibers (c).

To showcase the potential of 3D nanoprinting, a reference from 2009 on helical metasurfaces

by Gansel et al. was included. This work reports the - to our knowledge - smallest pitch distance

achieved so far with this technology: 1.8 µm [95]. However, as the total length of these helices
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is only about 5 µm, this result is not directly applicable in the context of the twisted waveguides

presented in this thesis.
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S2 Multimode versus single-mode strand light cages
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Fig S2 Comparison between multimode and single-mode strand light cages. Spectral distribution of the real part of the
effective index (a) and attenuation (b) of the fundamental mode of the untwisted waveguides. The single-mode strand
light cage (purple) does not feature any core-strand resonances for wavelengths larger than 650 nm. All simulations
in this work that use a fixed wavelength are performed at 770 nm, which is located in a transmission band of the
multimode strand light cage (yellow). Insets in (b) depict the geometries. A simplified version of the single-mode
strand geometry is shown for clarity.

S3 Interpretation of twist-induced mode coupling as a grating effect
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Fig S3 Interpretation of twisted waveguides as gratings. (a) Side view of a twisted light cage with 6-fold rotational
symmetry. Its cross section repeats after a distance P/6, while each individual strand features a helical pitch distance
P . (b) Wavevectors involved in coupling of two core modes. The grating vector of the twisted waveguide (orange)
mediates the phase matching. Note that the spin- and OAM-selectivity is hidden in the order q, as the grating can only
couple modes with ∆j = 6q.
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S4 Simulation results for additional twist-induced resonances

Here, two more resonances in twisted light cages are analyzed, completing the analysis presented

in Fig. 3. The simulation results corroborate the explanation of twist-induced resonances in Sec. 3.
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Fig S4 Further twist induced resonances in single-mode strand light cages supplementing Fig. 3. (a) Real part of
the effective index in the helicoidal frame and (b) attenuation of the fundamental core modes (l = 0) and relevant
higher-order core modes. Left panel shows the second achiral resonance (∆s = 0, ∆l = 12), and right panel a further
chiral resonance (∆s = +2, ∆l = 4). The OAM mode involved in the chiral resonance is of second radial order (i.e.,
m = 2 in the notation used for the tube model in Sec. 6).

S5 Spiraling phase patterns in OAM modes

Fig. 3(c) shows that modes carrying OAM feature a spiraling phase profile on the outside of the

core, which is different from the OAM phase profile inside the core. The spiraling pattern arises

as the sum of an OAM phase profile with that of a diverging lens whose focal length is found to

be largely independent of twist rate and OAM order. The diverging field outside of the core might

be related to the higher propagation loss of OAM modes compared to the fundamental modes, as

energy is constantly carried away from the core.
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Fig S5 Interpretation of ”spiraling” phase profile of OAM modes shown in Fig. 3. For negative OAM (a), the phase
profile twists counterclockwise outside of the core region, while it twists clockwise for positive OAM (b). Phase
profiles on the left were simulated for a RCP mode at a twist rate of 0.8/mm. The twisting phase profile can be
modeled as the sum of an exp(ilϕ) phase profile and the phase of a diverging lens (focal length: −190 µm). Inside the
core (yellow shaded area), the phase profile does not twist. Scale bar denotes 10 µm.

S6 Refractive index of IP-Dip polymer

The dispersion of the polymerized resist, from which the waveguide is made, is provided by Nano-

scribe GmbH in the form of a single-term Sellmeier equation (shown in Fig. S6):

n(λ) =

√
1 +

A1λ2

λ2 − λ2
1

, (S1)

with A1 = 1.3424689 and λ1 = 0.128436 µm. More detailed formulas including the imaginary

part of the refractive index and its changes under different polymerization conditions can be found

in Ref. [93]. In our analysis, we neglected the losses of the polymer because (1) only a negligible

portion of the field is guided inside the polymer, and (2) scattering losses due to surface roughness

of the polymer are likely higher than the intrinsic loss of the material.
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Fig S6 Refractive index of the polymerized resist (IP-Dip, Nanoscribe GmbH) calculated using Eq. (S1).

S7 Convergence of the FEM simulation

The convergence of the real and imaginary part of nhelical
eff with decreasing mesh size in the core

and strands of a multimode strand twisted light cage strand diameter of D = 3.6 µm is shown in

Fig. S7. As evident from the insets in Fig. 5(d) the fundamental mode of the twisted light cage

develops more and more fine features as the twist rate increases which requires the use of finer

meshes. A mesh size that yields sufficient convergence for this geometry at all investigated twist

rates was λ/6 in the strands and λ/2 in the core. For λ = 770 nm this results in a mesh consisting

of 117,950 triangles.

If the eigenvalues do not converge with decreasing mesh size, the distance between the outer-

most part of the structure and the PML should be adjusted. If the distance is too small, unwanted

interactions with the PML might occur. If the distance is too large, the solver might not be able to

find the correct eigenmode.
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Fig S7 Convergence of the FEM simulation of the effective index nhelical
eff with decreasing mesh size on the example

of a twisted multimode-strand light cage. Convergence was checked for twist rates ranging from 0 to 10 twists per
mm as indicated in the legend. The mesh size was varied both in the hollow core (left panels, yellow region) and in
the strands (right panels, blue region). Real (a) and imaginary (b) part of nhelical

eff have converged to a satisfactory level
for all twist rates once the mesh size reaches λ/2 in the core and λ/6 in the strands (dashed black lines). For even
smaller mesh sizes, the computation time increases strongly (c). Selected meshes for the sizes indicated by the arrows
are depicted in (d). The RCP fundamental mode of the light cage was simulated at λ = 770 nm. For the simulations
in the left panels, the mesh size in the strands was fixed to λ/6, while the mesh size in the core was fixed to λ/2 in the
right panels.

S8 Helicoidal coordinate frame

The helicoidal frame is a local coordinate system used to describe structures that are invariant under

twisting (i.e., invariance under a combination of rotation and translation). Helicoidal coordinates
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(ξ1, ξ2, ξ3) are related to Cartesian coordinates (x, y, z) via [25]:

r =


x

y

z

 =


ξ1 cos(αξ3) + ξ2 sin(αξ3)

−ξ1 sin(αξ3) + ξ2 cos(αξ3)

ξ3

 ⇔


ξ1

ξ2

ξ3

 =


x cos(αz)− y sin(αz)

x sin(αz) + y cos(αz)

z

 . (S2)

For fixed values ξ1 and ξ2, the curve r(ξ3) is a left-handed helix for α > 0. The basis vectors of

the helicoidal frame are given by:

ξ1 =
∂r

∂ξ1
=


cos(αξ3)

− sin(αξ3)

0

 , ξ2 =
∂r

∂ξ2
=


sin(αξ3)

cos(αξ3)

0

 ,

ξ3 =
∂r

∂ξ3
=


−ξ1α sin(αξ3) + ξ2α cos(αξ3)

−ξ1α cos(αξ3)− ξ2α sin(αξ3)

1

 .

(S3)

Note that ξ3 is not normalized and the system (ξ1, ξ2, ξ3) is not orthogonal. Since ξ1 and ξ2 always

lie in the xy plane, the helicoidal coordinate system is especially useful if the wavefronts of the

fundamental mode are perpendicular to the z axis, which is the case for twisted light cages and

most other on-axis twisted waveguides. Further coordinate frames in which twisted waveguides

become invariant are the Frenet-Serret frame and the Overfelt frame [41].

In this work, the invariance of twisted waveguides along the ξ3 coordinate is used to perform

the optical simulations in two dimensions reducing computation time compared to a full 3D sim-

ulation. This is possible because the vector wave equations (Eq. (S5)) have the same form in
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any coordinate frame if the material properties (ϵ, µ) are replaced by modified material properties

(ϵ′, µ′) [98]:

ϵ′ = T−1ϵ (T−1)⊤ det(T), µ′ = T−1µ (T−1)⊤ det(T), (S4)

where T−1 is the inverse of the Jacobian T = (ξ1, ξ2, ξ3) of the coordinate transformation, ⊤

denotes the transposed matrix, and det the determinant. The vector wave equations of linear media

used by the solver can be stated as [99]:

∇×
(
µr
−1∇× E

)
+

1

c20
ϵr

∂2E

∂t2
= 0,

∇×
(
ϵr
−1∇×H

)
+

1

c20
µr

∂2H

∂t2
= 0,

(S5)

where c0 is the speed of light in vacuum. As light cages are made from isotropic materials (i.e.,

material properties are scalars), Eq. (S4) reduces to [100]:

ϵ′ = ϵG−1, µ′ = µG−1,

with G−1 =

(
T⊤T

det(T)

)−1

=


1 + α2ξ22 −α2ξ1ξ2 −αξ2

−α2ξ1ξ2 1 + α2ξ21 αξ1

−αξ2 αξ1 1

 .

(S6a)

(S6b)

Twisting a waveguide therefore effectively results in the material properties becoming anisotropic,

with the degree of anisotropy increasing with twist rate and distance from the twist axis. Further-

more, it is important to note that the curl operator in the vector wave equations takes on a nontrivial

form as the helicoidal coordinate frame is not orthogonal [92].

Note, that the transformation of the material properties explained here is automatically carried
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out by the used FEM solver (JCMwave).

S9 Transformation of the effective index to the lab frame

After transforming the effective index to the lab frame using Eq. (8), the index of the fundamental

modes does not intersect anymore with those of the higher-order modes. This emphasizes that the

angular momentum harmonics (which are neglected when applying Eq. (8)) are responsible for the

twist-induced mode coupling.
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Fig S8 Real part of the effective index of fundamental and higher-order modes with |l| = 6 in the lab frame. Results
were calculated for a twisted single-mode strand light cage. The corresponding figure showing the results in the
helicodal frame are shown in Fig. 3(a).

S10 OAM decomposition

An example of an OAM decomposition of the fundamental RCP mode (i.e., j0 = −1) of an

untwisted light cage is shown in Fig. S9 below. In this example, only the x component of the

electric field was analyzed. The resulting OAM distribution therefore contains peaks at l = 6q and

l = 6q − 2 corresponding to the two different spin contributions.

To determine the spin state of the OAM harmonics identified in Fig. S9, the modes are first

decomposed into the two spin states (as described in Sec. 10.4), such that the OAM decomposition

can be carried out separately for each spin state. The results of this analysis are shown in Fig. S10,

which is a more detailed version of Fig. 4(e) of the main text.
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Fig S9 Decomposition of a mode into Bessel beams for analyzing its OAM content. (a) The electric field Ex of the
RCP fundamental mode of an untwisted single-mode strand light cage (left panel) can be decomposed into a series of
Bessel beams Ψlp with amplitudes al,p according to Eq. (10) (right panels). Ψlp is defined within a circle of radius
R0 (yellow dashed line) with values on the boundary being 0. Field values outside of this circle are not analyzed. (b)
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the convergence of the decomposition procedure. The sum over all squared amplitudes is close to 1 indicating a good
fit (c).
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spin contribution (s = +1) causes peaks at l = 6q − 2. As expected, the total angular momentum of all contributions
is equal to j = −1 + 6q. Gray dashed lines are a guide to the eye indicating that the amplitudes of the negative OAM
harmonics increase with twist rate. The horizontal lines on top of the bars are an estimate of the error of the OMA
decomposition as described in Sec. 10.4. (d,e,f) Analogous to (a,b,c) for the LCP mode.
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S11 Comparison between hexagonal and round arrangement of the strands

To demonstrate the effect of the waveguide geometry on the optical properties of the twisted waveg-

uide, additional simulations were performed for a single-mode strand light cage with a circular

arrangement of the 108 strands. As shown in Fig. S11, the RCP fundamental mode in the round

variant features OAM harmonics with l = 108 and l = 108− 2, as expected.
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Fig S11 Comparison of OAM decomposition between hexagonal (left panels) and round (right panels) single-mode
strand light cages on the example of the RCP fundamental mode. (a) Magnitude of the electric field at the indicated
twist rates. Both geometries consist of 108 strands and are shown in a simplified versions as blue dots. (b) OAM
decomposition indicating dominant RCP (orange) and weak LCP (blue) components of the RCP mode. Twisting
shifts the average of the OAM distribution towards negative values for a left-handed twist (lower panels in b, gray
dashed lines are a guide to the eye). The horizontal lines on top of the bars are an estimate of the error of the OMA
decomposition as described in Sec. 10.4.

The reduced number of OAM harmonics in the round arrangement leads to a reduction in the

number of allowed twist-induced resonances, as predicted by Eq. (2). The corresponding simula-

tion results are shown in Fig. S12.
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Fig S12 Comparison of optical properties of twisted single-mode strand light cages in the lab frame. Left panels show
the hexagonal, right panels the round geometry. (a) Real part of the effective index of the RCP and LCP fundamental
mode. (b) Circular birefringence. Light purple line is an analytical prediction based on the properties of the untwisted
waveguide (Eq. (4)). (c) Attenuation of the fundamental core modes. Vertical lines are predictions for the resonances
according to Eq. (S9) (blue: LCP, orange: RCP, gray: LCP and RCP). Insets in (c) depict the simplified geometries.

S12 Tube waveguide model

Here we show that untwisted light cages can be approximated as a tube to obtain an analytic expres-

sion for the effective indices of the higher-order modes based on the dispersion of the fundamental

mode. To this end, we apply a recently reported model for tube-type hollow-core fibers [47], with

the geometry shown in Fig. S13.

w

2R
Air

n

Fig S13 Geometry of the tube waveguide model of Ref. [47]. The model applies to waveguides where the cross section
is a ring with inner radius R, thickness w, and refractive index n.

The model approximates the cladding surface to be locally flat, which is a good approximation
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for the large core radii of light cages (R ≫ λ). If the core is filled with air, the effective index of

its modes can be described as [47]:

nl,m
eff = 1−

u2
l,m

2
(k0R)−2 −

u2
l,m

2

n2 + 1√
n2 − 1

(k0R)−3 cot
(
k0w

√
n2 − 1

)
+O

(
(k0R)−4

)
, (S7)

where ul,m is the mth root of the lth order Bessel function of the first kind. l = ...,−1, 0, 1, ... and

m = 1, 2, ... refer to the azimuthal and radial order of the modes, respectively, akin to the definition

of LP modes. HE and EH vector modes are grouped together in this equation by neglecting

contributions of O ((k0R)4). The equation also holds for TE and TM modes if the refractive index

contrast is low (n ≈ 1). Since the following analysis is based on modes with |l| ̸= 1, TE and TM

modes can be neglected entirely.

The model is verified using the fundamental modes of the multimode and single-mode strand

light cage. As shown in Fig. S14, the model is in good agreement with the simulated effective

index with small deviations occurring around the resonances.
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Fig S14 Application of the tube waveguide model of Ref. [47] to light cages. The model (gray dotted line) accurately
describes the dispersion of untwisted light cages with single-mode strands of diameter 2rc of 0.4 µm (a) and multimode
strands of diameter 3.6 µm (b). The fitted parameters were: R = 12.37 µm; w = 0.267 µm for (a), and R = 11.5 µm;
w = 3.448 µm for (b).

The fitted parameters R and w are remarkably close to the hexagon radius ρ = 14 µm and

strand diameter 2rc of the light cage, showing that the strand supermodes of the light cage indeed

19



behave like a tube that confines the light inside the core.

Having determined the parameters of the model, Eq. (S7) can be used to estimate the index of

all higher-order modes, which only depends on ul,m for a fixed wavelength:

nl,m
eff ≈ 1− Au2

l,m, (S8)

where A(λ) does not depend on the order of the mode. The quadratic dependence of the indices on

ul,m matches well with the simulated modal indices as shown in Fig. S15. Plugging this relation

into Eq. (2) then allows to determine the twist rates at which resonances may occur:

α∆j ≈ Ak0(u
2
l̃,m̃

− u2
0,1). (S9)

Note that for large values of l or m, the function ul,m grows approximately linearly in m and l.
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Fig S15 Effective index of higher-order modes in untwisted single-mode strand light cages. Indices of modes of radial
order m = 1 and azimuthal orders l ranging from 0 to 6 were simulated (orange squares). Gray dashed line corresponds
to the tube model (Eq. (S8)) with parameters obtained from the dispersion of the fundamental mode (m = 1, l = 0).
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S13 Simulaton results for multimode strand light cages

The analysis of multimode strand light cages in the main part of the paper was limited to the four

twist rates of the fabricated samples. Here, additional results are presented for intermediate twist

rates. Note that these results were calculated for a strand diameter of 2rc = 3.6 µm with left-

handed twisting direction, while the results shown in Fig. 5 pertain to right-handed structures with

2rc = 3.814 µm.
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Fig S16 Dispersion (a) and attenuation (b) of the RCP fundamental mode in multimode strand light cages at different
twist rates. Dispersion was calculated in the lab frame using Eq. (8). Left panel: low twist rates (0 - 1.3/mm). Right
panel: high twist rates (1.465 - 10/mm). Twisting induces resonances to higher-order core modes, e.g., at a wavelength
of 770 nm for a twist rate of 1.05/mm.

The left panel of Fig. S16 and Fig. S17 indicate that the spectral position of core-strand reso-

nances is nearly unaffected by twisting. This can be understood based on the analysis of off-axis

twisted waveguides in [41]. The strands of multimode strand twisted light cages correspond ex-

actly to the multimode helicoidal waveguides analyzed in this reference. Twisting was shown to

increase the effective modal index of the strands due to the increased path that the light has to
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travel along the helical trajectory. However, light in the hollow core remains on the twist axis and

is therefore not forced to travel along an elongated path. Thus, the effective index of the core mode

(evaluated in the lab frame) does not increase with twist rate as shown in Fig. S8. Since the index

of the core is lower than that of the strands, twisting only increases this index difference further.

Core-strand resonances therefore still only occur at the cut-offs of the strand modes, which are

apparently unaffected by twisting.
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Fig S17 Impact of twisting on the spectral position of core-strand resonances and transmission band minima. Analysis
was performed for multimode strand light cages based on the data in Fig. S16. Positions of core-strand resonances
(orange) remain mostly unaffected by twisting while transmission band minima (blue) may shift due to twist-induced
core-core resonances.

S14 Increased loss at high twist rates

Both, in the experimental and the simulation results shown in Fig. 5 the average propagation loss

increases at high twist rates. One possible explanation is that with an increased twist rate, the core

mode couples to more and more lossy higher-order core modes, thus increasing the propagation

loss. To estimate the number of resonances occurring within the observed wavelength range, we

use the tube waveguide model reported in Sec. S12. As expected, the results shown in Fig. S18

indicate an increase in the number of resonances with twist rate, making this a likely explanation

for the observed increase in propagation loss.
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Fig S18 Explanation for increased loss at high twist rates. (a) The number of allowed resonances (chiral: blue/orange,
achiral: gray) increases with twist rate according to Eq. (S9) both for the single-mode strand (top) and multimode
strand variant (bottom). (b) The attenuation of the fundamental modes in the multimode strand light cage increases
strongly with twist rate. For low twist rates (left side), the loss was evaluated at the off-resonance point of the three
transmission bands indicated in the legend (data was taken from Fig. S16). For high twist rates, individual transmission
bands cannot be distinguished and the loss was averaged between 680 nm - 880 nm (right side). Error bars denote the
corresponding standard deviation.

S15 Optical measurement setup

The setup shown in Fig. S19 was used for the measurement of circularly polarized light through

the waveguides. All components and the measurement procedure are described in Sec. 10.6.

L

White light

PBS PBS Fiber-coupled
spectrometer

HPol QWP

CCD

VPol

Dump

Obj

Waveguide chip

Obj

Path for unpolarized light

M

M

Fig S19 Setup for transmission and circular dichroism measurements. White light: supercontinuum laser source,
PBS: polarizing beamsplitter, HPol/VPol: horizontal/vertical linear polarizer, QWP: quarter waveplate, Qbj: objective,
CCD: camera, L: lens, M: mirror pair for beam steering. Flip mirrors determine whether polarized or unpolarized light
is sent to the waveguide chip, and a beam dump is used for selecting a specific polarization. Component library from
Ref. [97] was used to create this figure.
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The setup allows light of several polarization states to be used, in particular unpolarized, lin-

early polarized (horizontal/vertical with respect to the plane of the sample substrate), and circularly

polarized (LCP/RPC) light. For the circular dichroism measurements, circularly polarized light is

generated by two linear polarizers and a quarter waveplate with its optical axis oriented at a 45◦

angle with respect to the axis of the polarizers.

Measurements with circularly polarized light pose additional requirements on the setup because

reflections and refractions on any surface reduce the degree of circularity of the polarization state,

thus creating elliptically polarized light (because the Fresnel reflection coefficients are generally

different for TE and TM incidence [96]). To avoid this, the quarter waveplate is the last optical

element before the light is coupled to the waveguide.

Furthermore, any shifts of the beam need to be avoided when switching between LCP and RCP

light as such shifts would change the amount of light that is coupled to the waveguide, thus leading

to false positive CD measurements. To avoid any mechanical movement, the two linear polarizers

are placed in the arms of a Mach Zehnder interferometer beam path. By blocking one arm of

the beam path, a specific linear polarization (horizontal or vertical) is selected, which translates

to a specific circular polarization after the quarter waveplate. The beam path is created using two

polarizing beamsplitters (Thorlabs PBS252, 620 - 1000 nm) to avoid the 75% loss that would occur

for non-polarizing beamsplitters. For accurate measurements, a precise overlap of the two beams

created in the interferometer is essential, which is achieved by ensuring that the beam positions

match at two points that are about 1.5 m apart: an iris at the output of the interferometer and the

pinhole represented by the multimode fiber.
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S16 Impact of support elements on the propagation loss

While support rings and support blocks cannot be included in the simulations because they break

the translational invariance of the waveguide, we argue that their impact on the propagation loss

is limited by calculating the fraction of optical power, η, that is confined within the hexagonal

core (and thus not present in the region of the support elements). Specifically, η is determined

by integrating the z component of the Poynting vector over the hexagonal core and comparing it

to the integral over the entire simulation domain. It should be noted that the simulation area was

limited to the immediate vicinity of the light cage cross section since the radiation caustics (i.e. the

point at which the field changes its character from decaying to rising [101]) is far away from the

light cage surface and can therefore be neglected (cf. Supporting Information of Ref. [34]). This

resulting fraction η is > 99.5 % for both untwisted and highly twisted light cages at a wavelength

of 770 nm (Fig. S20). Therefore, it can be concluded that the loss caused by the support elements

is negligible.
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Fig S20 Fraction of optical power η guided inside the hexagonal core in the untwisted and strongly twisted case.
(a) Multimode strand light cage (b) Single-mode strand light cage. Core area is highlighted by the green line. Simula-
tions were performed at λ = 770 nm. Scale bar denotes 10 µm.
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S17 Comparison between hexagonal and triangular arrangement of the strands and the

impact of core size

To further investigate the influence of rotational symmetry on the twist-induced resonances, addi-

tional simulations were performed for a triangular arrangement of the single-mode strands (C3z sym-

metry). The dimensions of the waveguide were chosen such that it has the same circumference

radius (14 µm) and strand-to-strand spacing Λ as the hexagonal counterpart, resulting in a total

number of 93 strands instead of the 108 in the hexagonal variant.

This choice of parameters leads to a reduced mode area in the triangular geometry, as evident

from the lower effective index in the untwisted waveguide (Fig. S21(a)). Therefore, the effective

index spacing between the fundamental and OAM modes is larger in the triangular configuration

than in the hexagonal one, consistent with the predictions of the tube waveguide model (Eq. (S7)).

As a result, the number of twist-induced resonances within the studied twist rate range is reduced

in the triangular variant (Eq. (2)), despite the angular momentum selection rule permitting a greater

number of OAM modes to be excited by the fundamental modes (Eq. (3)).

In contrast to the circular arrangement of the strands, the triangular configuration exhibits a

higher circular birefringence than the hexagonal variant (Fig. S21(b)). This increase occurs be-

cause the rotational invariance of the modes is broken to a greater extent by both the triangular

geometry and the smaller core size (see Eq. (4)).

It should also be noted that the propagation loss in untwisted antiresonant waveguides is

known to scale approximately inversely with the fourth power of the mode diameter [47]. Thus,

the reduced mode area in the triangular arrangement leads to an overall higher propagation loss

(Fig. S21(c)).
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In summary, a smaller core size results in (i) increased circular birefringence, (ii) fewer reso-

nances per twist rate interval, and (iii) overall higher propagation loss.
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Fig S21 Comparison of optical properties of two types of twisted single-mode strand light cages in the lab frame. Left
panels show the hexagonal, right panels a triangular geometry. (a) Real part of the effective index of the RCP and LCP
fundamental mode. (b) Circular birefringence. (c) Attenuation of the fundamental core modes. Insets in (c) depict
simplified geometries with a reduced number of strands.
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